A New Indexing Method
for Approximate String Matching *

Gonzalo Navarro and Ricardo Baeza-Yates

Dept. of Computer Science, University of Chile
Blanco Encalada 2120 - Santiago - Chile
{gnavarro,rbaeza}@dcc.uchile.cl

Abstract. We present a new indexing method for the approximate
string matching problem. The method is based on a suffix tree combined
with a partitioning of the pattern. We analyze the resulting algorithm
and show that the retrieval time is O(n)‘), for 0 < A < 1, whenever
a < 1—e/+/o, where « is the error level tolerated and ¢ is the alphabet
size. We experimentally show that this index outperforms by far all other
algorithms for indexed approximate searching, also being the first exper-
iments that compare the different existing schemes. We finally show how
this index can be implemented using much less space.

1 Introduction

Approximate string matching is a recurrent problem in many branches of com-
puter science, with applications to text searching, computational biology, pattern
recognition, signal processing, etc.

The problem is: given a long text of length n, and a (comparatively short)
pattern of length m, retrieve all the text segments (or “occurrences”) whose edit
distance to the pattern is at most k. The edit distance between two strings is de-
fined as the minimum number of character insertions, deletions and replacements
needed to make them equal. We define the “error level” as o = k/m.

In the on-line version of the problem, the pattern can be preprocessed but
the text cannot. The classical solution uses dynamic programming and is O(mn)
time [27,28]. A number of algorithms improved later this result [34,20,16,11,
35,32,12,30,36,9, 8,24]. The lower bound of the on-line problem (proved and
reached in [12]) is O(n(k + log, m)/m), which is of course f2(n) for constant m.

If the text is large even the fastest on-line algorithms are not practical, and
preprocessing the text becomes necessary. However, just a few years ago, index-
ing text for approximate string matching was considered one of the main open
problems in this area [35, 3]. Despite some progress in the last years, the indexing
schemes for this problem are still rather immature.

There are two types of indexing mechanisms for approximate string match-
ing, which we call “word-retrieving” and “sequence-retrieving”. Word retrieving

* This work has been supported in part by Fondecyt grant 1-990627 and Fondef grant
96-1064.

indices [22,6,2] are more oriented to natural language text and information re-
trieval. They can retrieve every word whose edit distance to the pattern is at
most k. Hence, they are not able to recover from an error involving a separator,
such as recovering the word "flowers" from the misspelled text "flo wers"
or from "manyflowers", if we allow one error!. These indices are more mature,
but their restriction can be unacceptable in some applications, especially where
there are no words (as in DNA) or in agglutinating languages such as Finnish
or German.

Our focus in this paper is sequence retrieving indices. Among these, we find
two types of approaches.

A first type is based on simulating a sequential algorithm, but running it
on the suffix tree [19,1] or DAWG [14,10] of the text instead of the text itself.
Since every different substring in the text is represented by a single node in the
tree or the DAWG, it is possible to avoid redoing the same work when the text
has repetitions. Those indices take O(n) space and construction time, but their
construction is not optimized for secondary memory and is very inefficient in
this case (see, however, [15]). Moreover, the structure is very inefficient in space
requirements, since it takes 12 to 70 times the text size.

In [18,33,13], different algorithms that traverse the least possible nodes in
the suffix tree (or in the DAWG) are presented. The idea is to traverse all the
different tree nodes that represent “viable prefixes”, which are text substrings
that can be prefixes of an approximate occurrence of the pattern.

In [17], a simplified version of the above technique was independently pro-
posed, consisting of a limited depth-first search (DFS) on the suffix tree. Since
every substring of the text (i.e. every potential occurrence) can be found from
the root of the suffix tree, it is sufficient to explore every path starting at the
root, descending by every branch up to where it can be seen that that branch
does not represent the beginning of an occurrence of the pattern. This algorithm
inspects more nodes than the previous ones, but it is simpler. For instance, with
an additional O(logn) time factor, the algorithm runs on suffix arrays, which
take 4 times the text size instead of 12. This algorithm was analyzed in [4].

The second type of sequence-retrieving indices is based on adapting an on-line
filtering algorithm. The filters are based in matching substrings of the patterns
without errors, and checking for potential occurrences around those matches.
The index is used to quickly find those substrings, and is based on storing some
text g-grams (substrings of length ¢) and their positions in the text.

Different filtration indices [23,31,29, 7] differ mostly in how the text is sam-
pled (distance between consecutive text samples, whether they overlap or not,
etc.), in how the pattern is sampled, in how many matching samples are needed
to verify their neighborhood in the text, etc. Depending on this and on g they
achieve different space-time tradeoffs. In general, filtration indices are much
smaller than suffix trees (1 to 10 times the text size), although they are less
tolerant to the error level a. They can also be built in linear time.

! Although some, like Glimpse [22], can match the pattern inside a text word.

Somewhat special is [23], because it does not reduce the search to exact but to
approximate search of pattern pieces. To search for a pattern of length m < ¢—k,
all the maximal strings with edit distance < k to the pattern are generated and
searched in the set of ¢-grams. Later, all the occurrences are merged. Longer
patterns are split in as many pieces as necessary to make them short enough.

In this paper we present a hybrid indexing scheme for this problem. It uses
a suffix tree, where the pattern is partitioned in subpatterns which are searched
with less errors in suffix tree. All the occurrences of the subpatterns are later ver-
ified for a complete match. The goal is to balance between the cost to search in
the suffix tree (which grows with the size of the subpatterns) and the cost to ver-
ify the potential occurrences (which grows when shorter patterns are searched).
This method shows experimentally to be by far superior to all other implemented
proposals, and we show analytically that the average retrieval time can be made
O(n?atHo(2))/(1+2)) where H,(a) is the base-o entropy function. This is sub-
linear for o < 1—e/+/o. This limit on o cannot probably be improved [8, 25]. We
finally propose an alternative data structure to reduce the space requirements
of the suffix tree, with little time penalty.

2 Combining Suffix Trees and Pattern Partitioning

We present now our alternative proposal. The general idea is to partition the
pattern in pieces, search each piece in the suffix tree in the classical way, and
check all the positions found for a complete match. We first consider how to
search a piece in the suffix tree and later address the pattern partitioning issue.

2.1 DFS Using a Bit-parallel Automaton

Let us consider the existing algorithms to traverse the suffix tree. While [33,
13] minimize the number of nodes traversed, [17] is simpler but inspects more
nodes. We show that [17], thanks to its simplicity, can be adapted to use a node
processing algorithm which is faster than dynamic programming, namely our
on-line algorithm of [8]%2. The tradeoff is: we can explore less nodes at higher
cost per node or more nodes at less cost per node. We show later experimentally
that this last alternative is much faster when [8] is used to process the nodes.
We recall that the idea of [17] is a limited depth-first search on the suffix
tree, starting at the root and stopping when it can be seen that the current text
substring cannot start an approximate pattern occurrence. No text occurrence
can be missed because every text substring can be found starting from the root.
More specifically, we compute the edit distance between the tree path and the
pattern, and if at some node the distance is < k we know that the text substring
represented by the node matches the pattern. We report all the leaves of the
suffix tree which descend from those nodes, since their text positions start with
the matching substring. On the other hand, when we can determine that the

% Probably [24] would also fit well.

edit distance cannot be as low as k, we abandon the path. This surely happens
at depth m + k£ + 1 but normally happens before.

We implement this traversal using our algorithm of [8] instead of dynamic
programming. This algorithm uses bit parallelism to simulate a non-deterministic
finite automaton (NFA) that recognizes the approximate pattern. We modify this
automaton to compute edit distance (removing the initial self-loop it has in [8]).

Figure 1 shows the automaton to recognize "patt'" with & = 2 errors. Every
row denotes the number of errors seen. Every column represents matching a pat-
tern prefix. Horizontal arrows represent matching a character (i.e. if the pattern
and text characters match, we advance in the pattern and in the text). All the
others increment the number of errors (move to the next row): vertical arrows
insert a character in the pattern (we advance in the text but not in the pattern),
solid diagonal arrows replace a character (we advance in the text and pattern),
and dashed diagonal arrows delete a character of the pattern (they are empty
transitions, since we advance in the pattern without advancing in the text). The
automaton signals (the end of) a match whenever a rightmost state is active. If
we do not care about the number of errors of the occurrences, we can consider
final states those of the last full diagonal.

t
@ @ 1O errors
N\

1 error
\.D 2 errors

Fig.1. An NFA for approximate string matching. Unlabeled transitions match any
character. Dotted lines enclose the states actually represented in our algorithm.

Initially, the active states at row ¢ are at the columns from 0 to 7, to represent
the deletion of the first ¢z characters of the pattern. We do not need in fact to
represent the initial lower-left triangle, since if a substring matches with initial
insertions we will find (in other branch of the suffix tree) a suffix of it which does
not need the insertions®. On the other hand, unlike [8], we need to represent the

% If, after traversing a text substring s, a 1 finally exits from the lower-left triangle,
then a suffix of s will do the same without entering into the triangle.

first full diagonal, since now it will not be always active. We start the automaton
with only this first full diagonal active, and traverse the suffix tree path until
the automaton runs out of active states or the lower right state is activated.

The simulation of this automaton needs (m — k + 1)(k + 2) bits. If we call
w the number of bits in the computer word, then when the previous number
is < w we can put all the states in a single computer word and work O(1) per
traversed node of the suffix tree. For longer patterns, the automaton is split in
many computer words, at a cost of O(k(m — k)/w). For moderate-size patterns
this improves over dynamic programming, which costs O(m) per suffix tree node.

This bit-parallel variation is only possible because of the simplicity of the
traversal. For instance, the idea does not work on the more complex setup of
[33,13], since these need some adaptations of the dynamic programming algo-
rithm that are not easy to parallelize. Note that this algorithm can be seen as a
particular case of automaton searching over a trie [5].

2.2 Partitioning the Pattern

It is well known [33,4] that the search cost using the suffix tree grows exponen-
tially with m and k, no matter which of the two techniques we use (optimum
traversal or DFS). Hence, we prefer that m and k are small numbers. We present
in this section a new technique based in partitioning the pattern, so that the
pattern is split in many sub-patterns which are searched in the suffix tree, and
their occurrences are directly verified in the text for a complete match. We show
in the experiments that this technique outperforms all the others.

This method is based on the pattern partitioning technique of [23,8]. The
core of the idea is that, if a pattern of length m occurs with % errors and we
split the pattern in j parts, then at least one part will appear with |k/j| errors
inside the occurrence. In fact, the case j = k + 1 is the basis for the algorithm
[9] and the g-gram index [7].

The new algorithm follows. We evenly divide the pattern in j pieces (j is
unspecified by now). Then we search in the suffix tree the j pieces with |k/j|
errors using the algorithm of Section 2.1. For each match found ending at text
position i we check the text area [— m — k..t + m + k].

The reason why this idea works better than a simple suffix tree traversal
with the complete pattern is that, since the search cost on the suffix tree is
exponential in m and k, it may be better to perform j searches of patterns of
length m/j and k/j errors. However, the larger j, the more text positions have
to be verified, and therefore the optimum is in between. In the next section we
find analytically the optimum j and the complexity of the search

One of the closest approaches to this idea is Myers’ index [23], which collects
all the text g-grams (i.e. prunes the suffix tree at depth ¢), and given the pattern
it generates all the strings at distance at most k& from it, searches them in the
index and merges the results. This is the same work of a suffix tree provided
that we do not enter too deep (i.e. m+k < q). If m+ k > ¢, Myers’ approach
splits the pattern and searches the subpatterns in the index, checking all the
potential occurrences. The main difference with our proposed approach is that

Myers’ index generates all the strings at a given distance and searches them,
instead of traversing the structure to see which of them exist. This makes that
approach degrade on biased texts, where most of the generated g-grams do not
exist (in the experimental section we show that it works well on DNA but quite
bad on English). Moreover, we split the pattern to optimize the search cost,
while the splitting in Myers’ index is forced by indexing constraints (i.e. ¢).

3 Analysis

3.1 Searching One Piece

An asymptotic analysis on the performance of a depth-first search over suffix
trees is immediate if we consider that we cannot go deeper than level m + &
since past that point the edit distance between the path and our pattern is
larger than & and we abandon the search. Therefore, we can spend at most
O(o™**) time, which is independent on n and hence O(1). Another way to see
this is to use the analysis of [5], where the problem of searching an arbitrary
automaton over a suffix trie is considered. Their result for this case indicates
constant time (i.e. depending on the size of the automaton only) because the
automaton has no cycles.

However, we are interested in a more detailed average analysis, especially the
case where n is not so large in comparison to ¢™1*. We start by analyzing which
is the average number of nodes at level £ in the suffix tree of the text, for small
£. Since almost all suffixes of the text are longer than £ (i.e. all except the last
£), we have nearly n suffixes that reach that level. The total number of nodes at
level £ is the number of different suffixes once they are pruned at £ characters.
This is the same as the number of different /-grams in the text. If the text is
random, then we can use a model where n balls are thrown into ¢ urns, to find
out that the average number of filled urns (i.e. suffix tree nodes at level ¢) is

ot (1 - (1- 1/0")n> = o (1 - e_@("/al)> = O (min (n,0"))

which shows that the average case is close to the worst case: up to level log, n
all the possible o nodes exist, while for deeper levels all the n nodes exist.

We also need the probability of processing a given node at depth £ in the
suffix tree. In the Appendix we prove that the probability is very high for 5 =
k/¢ > 1—c/+/o (Eq. (3)), and otherwise it is O(y(5)*), where v(3) < 1. The
constant ¢ can be proven to be smaller than e = 2.718..., and is empirically
known to be close to 1. The 4(z) function (Eq. (1)) is 1/(c* =22 (1 — z)2(1—2)),
which goes from 1/0 to 1 as z goes from 0 to 1 — ¢/+/0.

Therefore, we pessimistically consider that in levels

k
£ < Lk) = —— = O(k
) = {7z = o)
all the nodes in the suffix tree are visited, while nodes at level £ > L(k) are
visited with probability O(y(k/£)*), where y(k/£) < 1. Finally, we never work

past level m + k. We are left with three disjoint cases to analyze, illustrated in
Figure 2.

L(K)

some nodes
m+k

Fig. 2. The upper left figure shows the visited parts of the tree. The rest shows the
three disjoint cases in which the analysis is split.

(a) L(k) > log, n,ie n < o¥*) or “small n”

In this case, since on average we work on all the nodes up to level log, n,
the total work is n, i.e. the amount of work is proportional to the text size.
This shows that the index simply does not work for very small texts, being
an on-line search preferable as expected.

m+ k < log, n, i.e. n > o™** or “large n”

In this case we traverse all the nodes up to level L(k), and from there on we
work at level £ with probability v(k/£)¢, until £ = m + k. Under case (b),
there are of nodes at level £. Hence the total number of nodes traversed is

L(k) m+k
Za + > Ak/0)te
t=L(k)+1

where the first term is O(o7(*)). For the second term, we see that v(z) > 1/0,
and hence (y(k/£)o)* > 1. More precisely,

O_kzZl
(v(k/0)o)* = s

which grows as a function of £. Since (y(k/£)c)* > 1, we have that even if it
were constant with £, the last term would dominate the summation. Hence,
the total cost in case (b) is

k 2(m+k)
Lk o(1+a)
o 4 U

which is independent of n.

(¢) L(k) <log,n <m+k, ie. “intermediate n”
In this case, we work on all nodes up to L(k) and on some nodes up to m—+k.
The formula for the number of visited nodes is

L(k) log, (n)—-1 metk
Yoot + Y Akt + Y (k[0
£=0 {=L(k)+1 {=log, n

The first sum is O(O’L(k)). For the second sum, we know already that the last
term dominates the complexity (see case (b)). Finally, for the third sum we
have that y(k/£) decreases as £ grows, and therefore the first term dominates
the rest (which would happen even for a constant).

Hence, the case £ = log, n dominates the last two sums. This term is

k 2log, n k 1 2k
log, n _ o*(log, n) _ o"(log, n)
n’Y(k/loga TL) - ka(loga(n) _ k)Z(IOgU(n)—k) - kgk (1+O(1))

(this can be bounded by (o(1 + 1/a)%)* by noticing that we are inside case
(c), but we are interested in how n affects the growth of the cost).

The search time is then sublinear for log, n > max(L(k), m + k), or which is
the same, a < max(log,(n)/m (1 —¢/+/c),log,(n)/m — 1). Figure 3 illustrates.

Pz

log, n
T m
I

Veole

Fig. 8. Area of sublinearity for suffix tree traversal.

3.2 Pattern Partitioning

When pattern partitioning is applied, we perform j searches of the same kind of
Section 2.1, this time with patterns of length m/j and k/j errors. We also need
to verify all the possible matches.

As shown in [8], the matching probability for a text position is O(y(o)™),
where () is that of Eq. (1). From now on we use v = (). Using dynamic
programming, a verification costs O(m?) . Hence, our total search cost is

J x suffiz_tree_traversal(m/j, k/j) + Jx ™ im2n

and we want the optimum j. First, notice that if v = 1 (that is, @ > 1—¢/+/0), the
verification cost is as high as an on-line search and therefore pattern partitioning
is useless. In this case it may be better to use plain DFS. In the analysis that
follows, we assume that v < 1 and hence a < 1 —¢/+/0.

According to Section 3.1, we divide the analysis in three cases. Notice that
now we can adjust j to select the best case for us.

(@) o¥*/) >n, or jlog,n < k/(1—c/\/7)
In this case the search cost is §2(n) and the index is of no use.
(b) omtB)i < n, or jlog,n>m+k
In this case the total search cost is
j <aL(k/j) i ok lI(1 4)3 m+h)/s
a2kl

+ ,Ym/]m2n>

where the first two terms decrease and the last one increases with 7. Since
a + b = @(max(a, b)), the minimum order is achieved when increasing and
decreasing terms meet. When equating the first and third terms we obtain
that the optimum j is

m

jl:b%ﬁ@(kéﬁ*““”ﬂ

and the complexity (only considering n) is O (no‘/(o‘+(1_°/\/‘7) 1°gv(1/7))>.
On the other hand, if we equate the second and third term, the best j is

o = oy (1 2((1 4 @)log, (14 @) + (1~ o) log, (1 -)

and the Complexity is O (nl_IOga(l/V)/(l‘l'z((l‘Fo‘)1030(1+°‘)+(1_°‘)1030(1_0‘))))‘

In any case, we are able to achieve a sublinear complexity of O(n?), where

_ a log, (1/)
A = max(i eTeg, (77 1T TR e Tog, (L) (-) Tog, (1=a)))

Which of the two complexities dominates yields a rather complex condition
that depends on the error level ¢, but in both cases A < 1if a < 1 —¢/+/0.

* It can be done in O((m/5)?) time [23, 26], but this does not affect the result here.

If o is large enough (o > 24 for ¢ = e), the complexity corresponding to
j2 always dominates. However, it is possible that j; or j; are outside the
bounds of case (b) (i.e. they are too small). In this case we would use the
minimum possible j = (m + k)/log, n, and the third term would dominate
the cost, for an overall complexity of O(n1_1°gv(1/7)/(1+°‘)). This complexity
is also sublinear if & < 1 — ¢/+/0.

(c) o) < n < omR)i | or k/(1—c/\/o) < jlog,n<m+k
The search cost in this intermediate case is

k/j 2k/j
- L(k/j o (loga TL) mi7. 2
(o9 + T +amtimen)

where the first two terms decrease with 7 and the last one increases. Repeat-

ing the same process as before, we find that the first and third term meet

again at 7 = j; with the same complexity. We could not solve exactly where

the second and third term meet. We found

m(a + 2alog, log, n + log, % — 2alog, J"—s‘) N m(a + log,, %)
log,,(m?n) ~ log,(m?n)

j3 =

and since the solution is approximate, the terms are not exactly equal at j3.
The second term is O (no‘(1+21°gv(1/7))/(°‘+1°gv(1/7))), slightly higher than
the third. Again, it is possible that j3 is out of the bounds of case (¢) and
we have to use the same limiting value as before.

The conclusion is that, despite that the exact formulation is complex, we have
sublinear complexity for o < 1 — ¢/4/0, as well as formulas for the optimum j
to use, which is ©(m/log, n) with a complicated constant.

For larger o values the pattern partitioning method gives linear complexity
and we need to resort to the traditional suffix tree traversal (j = 1). As shown
in [8,25], it is very unlikely that this limit of 1 — ¢/+/o can be improved, since
there are too many real approximate occurrences in the text.

An interesting fact that is shown in the experiments is that in many cases
the optima are out of bounds and hence the best is to put j in the limit of cases
(b) and (c), just where the search of the subpieces become full searches. This
shows that a technique that is simple and the best choice in most cases is to
select 7 = (m + k)/log, n, for a complexity of

log, (1/7) 2(atHo (@)
0] (nl— g1+a~/> - 0 (n Tt)

where H,(a) = —alog, a — (1 — a)log, (1 — &) is the base-o entropy function.

3.3 The Limits of the Method

Let us pay some attention to the limits of our hybrid method (Figure 4).
Since j = @(m/log, n), the best j becomes 1 (i.e. no pattern partitioning)
when n > (™) (this is because the cost of verifications dominates over suffix

tree traversal). The best j is > k41 for n < ¢®(1/%)_ Since in this case we search
the pieces with zero errors (i.e. |k/(k + 1)| = 0, recall Section 2.2), the search
in the suffix tree costs O(m), and later we have to verify all their occurrences.
This is basically what the g-gram index of [7] does, except it prunes the suffix
tree at depth g.

Finally, the only case where the index is not useful is when n is very small.
We can increase j to be more resistant to small texts, but the limit is j = k£ + 1,
and using that j the index ceases to be useful for n < oo IE < o'/*, We have
also to keep sublinear the cost of verifications, i.e. ny!/® = o(1), which happens
for oo < 1/log; ., n. This requires, in particular, that m = £2(log n).

maximal

J=k+1

nothing

: : intermediate § : 7=1
useful : : (hybrid index) : no partit.
1 1 1

o,l/cx o_@(l/cx) o,@(m) n

Fig. 4. The j values to be used according to n.

This last consideration helps also to understand how is it possible to have a
sublinear-time index based on filtering when there is a fixed matching probability
per text position (y™), and therefore the verification cost must be £2(n). The
trick is that in fact we assume m = §2(log n), that is, we have to search longer
patterns as the text grows. As we can tune j, we softly move to j = 1 (then
eliminating verification costs) when n becomes large with respect to m. This
“trick” is also present in the sublinearity result of Myers’ index [23], and implicit
in similar results on natural language texts [6, 25].

4 Experimental Results

We first validate some of the analytical results of the paper and later compare
our indices against the other existing proposals. We used two different texts:

— DNA text (“h.influenzae”), a 1.34 Mb file. This file is called DNA in our tests,
and H-DNA is the first half megabyte of it. In this case o = 4.

— English literary text (from B. Franklin), filtered to lower-case and the sep-
arators converted into a single space. This text has 1.26 Mb, and is called
FRA 1n the experiments. H-FRA is the first half megabyte of FRA. Given how
the analysis uses the o value, it is unrealistic to set it to the alphabet size,
because the text is biased. It is much better to consider that 1/c must be
the probability that two random letters are equal. This sets ¢ = 12.85.

The texts are rather small, in some cases too small to appreciate the speedup
obtained with some indices. This is because we had RAM problems to build
suffix trees for larger texts. However, the experiments still serve to obtain basic
performance numbers on the different indices.

We have tested short and medium-size patterns, searching with 1, 2 and 3
errors the short ones and with 2, 4 and 6 the medium ones. The short patterns
were of length 10 for DNA and 8 for English, and the medium ones were of length
20 and 16, respectively®. We selected 1000 random patterns from each file and
use the same set for all the k values of that length, and for all the indices.

4.1 Validating the Analysis

We first show that the suffix tree traversal has sublinear complexity. We built the
suffix tree of incremental prefixes of FRA and DNA, from 100 Kb to 800 Kb (larger
texts start to give 1/0 problems that disturb the ¢PU measures). According to
our analysis, the m, k£ and o values used correspond to intermediate text sizes
(case (b) of Section 3.1) for n = 4Kb..4Mb on DNA and for n = 40Kb..8Gb
on FRA. Hence, we are clearly in case () in all our experiments. The analysis
predicts a complexity of O((logn)%*).

Figure 5 shows the user time as n grows, from where the sublinearity is clear.
We have used least squares with the model t = aIn(n)® to find out the empirical
complexity and present it compared to the analytical complexity. The error of
the approximation is always below 5%. We see that the analysis approximates
reasonably the empirical results, despite the many simplifications done.

We consider now the optimal j value for pattern partitioning. Table 1 presents
the query time using different ;5 values in our index, for the FRA, H-FRA, DNA,
and H-DNA texts. As it can be seen, there are big differences in time depending on
7, and the optimum is a rather small j value (always 1 on short patterns). This
matches reasonably our formulas. In fact, once properly rounded, our analysis
recommends the correct j values. As mentioned before, the relevant value is
always in the limit between cases (b) and (c).

Figure 6 shows the user time for long patterns, as n grows, using pattern
partitioning with j = 2. This time we have used least squares with the model
t = an®. The error of the approximation is always below 2%. It can be seen
that also in this case the analysis approximates reasonably the empirical results,
slightly overestimating in most cases. The combination DNA (20,6) is not included
because it takes too long and already the case (20,4) was clearly linear.

4.2 Comparison Against Others

We compare our index with the other existing proposals. However, as the task
to program an index is rather heavy, we have only considered the other indices
that are already implemented. The indices included in this comparison are

Myers’: The index proposed by Myers [23]. We use the implementation of the
author, which works for some m values only (that depend on ¢ and n).

® This is because of the restrictions of Myers’ index intersected with our interest in
moderate-length patterns.

35 FRA (8.1) ~+—
DNA(10,0) ~— Text (m,k)|experiment|analysis

3 DNa (10,1) 2.83 2
DNa (10,2) 3.78 4

25+ DpNa (10,3) 3.79 6
FRA (8,1) 2.57 2

2y FRA (8,2) 3.53 4
FRA (8,3) 4.17 6

15

1 ‘ ‘ ‘ ‘ ‘ ‘

100 200 300 400 500 600 700 800

n (kb) [k=1]
70 700

600
50 1 500
40 + 400 |
0 300 |

20 200

100 r/&llﬁ//
0

. 0 . .
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
n (Kb) [k=2] n (Kb) [k=3]

10 -

Fig. 5. User query time (in milliseconds) for short patterns as n grows for £ = 1 to 3,
using j = 1. On the top right, the empirical and analytical exponent of log n.

Cobbs’: The index proposed by Cobbs [13]. We use the implementation of the
author, not optimized for space. The code is restricted to work on an alphabet
of size 4 or less, so it is only built on DNA.

Samples(g): Our index based on g-grams presented in [7]. We show the results
for ¢ = 4 to 6.

Dfs(a/p): Our new index based on suffix trees. We show the results for the base
technique (@) and pattern partitioning (p) with optimal j.

In particular, approximate searching on other g-gram indices [31] is not yet
implemented and therefore is excluded from our tests. We know, however, that
their space requirements are low (close to a word-retrieving index), but also that
since the index simulates the on-line algorithm [30], its tolerance to errors is
quite low (see [8,25], for example).

All the indices were set to show the matches they found, in order to put them
in a reasonably real scenario. We present the time to build the indices and the
space they take in Table 2.

|Text || (10,1) [(10,2) [(10,3) || (20,2) | (20,4) | (20,6)]

DNA |[L: 6.81[1: 134.4[1: 1044 ||1: 56.81 |1: 1989 |1: 10075
2: 2391 |2: 2585 |2: 2756 ||2: 15.80|2: 1033 |2: 9525
3: 802.8 |3: 1010 |3: 8841
4: 5862 |4: 39077
H-DNA|[L: 2.71|1: 44.29|1: 394.6|[1: 23.72 [1: 499.9 |1: 2308
2: 645.0(2: 715.3 |2: 860.4 ||2: 6.01 |2: 305.2(2: 2482
3: 232.7 (3: 305.9 |3: 2464
4:1520 |4: 10339
Text || (8,1) | (8,2) | (8,3) | (16,2) | (16,4) | (16,6)
FRA ||L: 6.11|L: 42.82(1: 215.2[1: 35.98 |1: 482.9 |1: 2204
2: 180.6(2: 1754 |2: 19600 ||2: 13.30|2: 88.22|2: 464.0
3: 90.71 |3: 736.6 |3: 4718
H-FRA |[1: 2.68|1: 14.28[1: 60.91|[1: 13.39 [1: 126.4 |1: 542.4
2: 61.43(2: 601.1 [2: 4920 ||2: 5.30 |2: 30.70|2: 146.4
3: 32.72 |3: 255.5 |3: 1538

Table 1. User query time (in milliseconds) for different (m,k) values (heading rows).
Inside each cell we show the cost for different ;7 values. The optimum is in boldface.

The first clear result of the experiment is that the space usage of the indices
is very high. In particular, the indices based on suffix trees (Dfs and Cobbs’)
take 35 to 65 times the text size. This outrules them except for very small texts
(for instance, building Cobbs’ index on 1.34 Mb took 12 hours of real time in our
machine of 64 Mb of RAM). From the other indices, Myers’ took 7-9 times the
text size, which is much better but still too much in practice. The best option
in terms of space is the Samples index, which takes from 1.5 to 7 times the text
size, depending on g and o. The larger ¢ or o, the larger the index. Samples(5),
which takes 2-5 times the text size, performs well at query time.

Compared to its size, Myers’ index was built very quickly. The Dfs index, on
the other hand, was built faster than Cobbs’. Notice that suffix trees are built
quickly when they fit in RAM (as in the half-megabyte texts), but for larger
texts the construction time is dominated by the 1/0, and it increases sharply.

We consider now query time. Tables 3 and 4 present a comparison between
the different indices, using for Dfs(p) the optimum j value of Table 1 (only for
medium patterns, since for short ones Dfs(a) is always better). The system time
is included because it is dominant in many cases. We include also the time of
on-line searching for comparison purposes (we use the fastest on-line algorithm
for each case). The results clearly show a number of facts.

— The indices work well only for moderate error levels. For larger texts the ratio
indexed/on-line should improve. However, when 1/0 time is considered many
indices seem useless, and it is not so clear that this improves for larger texts.
This depends on the amount of main memory available, and is a consequence
of most indices not being designed to work on secondary memory. This is a
very important issue that has been rarely addressed.

Text (m,k)|experiment|analysis
DNA (20,2)| 0.547 | 0.608
DNA (20,4)| 1.009 | 0.935
FRA (16,2)| 0.470 | 0.485
(16,4)
(16,6)

FRA (16,4 0.624 0.752
FRA (16,6 0.753 0.922

100 200 300 400 500 600 700 800
n(Kb) [k=2]

500 240
450 FRA(164) ~— 1 220 FRA(166) ~—
DNA (20.4) ——
400 1 200
350 1 180
300 1 160
250 1 140 +
200 1 120
150 1 100 -
100 + 1 8o |
50 DR, 60 [
0 : : : : : :) : : : : : :
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800

n (Kb) [k=4] n (Kb) [k =6]

Fig. 6. User query time (in milliseconds) for medium patterns as n grows for k = 2 to
6, using j = 2. On the top right, the empirical and analytical exponent of n.

— Our strategy Dfs(a) of using a simpler traversal algorithm on the suffix tree
and in return using a faster search algorithm definitively pays off, since our
implementation is 3 to 40 times faster than Cobbs’, and it is the fastest
choice for small m and %k values. Independently of this fact, the suffix tree
indices improve on larger alphabets, but they are much more sensitive to the
growth of m or k. In fact, the differences between FRA and DNA are due to
the different values of m used. The big problem with this type of index is of
course the huge space requirements it poses.

— Myers’ index behaves better on short patterns, when less splitting is neces-
sary. It works well for DNA but it worsens on English text. We conjecture
that the non-randomness may play a role here: the index takes internally
g = log, n to avoid searching a number of nonexistent samples that are at
distance k or less from the pattern (in our case it took ¢ = 10 for DNA and
g = 4 for English). However, in biased texts like English, a lot of g-grams are
not present anyway, and the index pays to search all of them. For DNA the
index is a good alternative, since although it is up to 13 times slower than

Index [DNA [H-DNA [FRA |H-FRA
Myers’ |5.84u+0.35s 2.08u+0.12s 5.22u+0.34s 2.01u+0.12s
10.68 Mb (7.97X) [4.50 Mb (9.00X) [9.39 Mb (7.46X) [4.18 Mb (8.35X)
Samples|5.53u+0.19s 1.95u+0.10s 15.05u4+0.41s 5.90u+0.24s
(4) |2.04 Mb (1.52X) [0.77 Mb (1.53X) |3.48 Mb (2.77X) [1.48 Mb (2.98X)
Samples|7.37u+0.24s 2.62u+0.08s 20.82u-+0.70s 8.70s4+0.35s
(5) |2.48 Mb (1.85X) [0.94 Mb (1.87X) [5.18 Mb (4.11X) [2.32 Mb (4.65X)
Samples|10.53u+0.32s 3.88u+0.13s 32.86u+1.34s 13.19u+0.97s

(6)

2.90 Mb (2.16X)

1.11 Mb (2.23X)

7.65 Mb (6.07X)

3.54 Mb (7.07X)

52.25 Mb (38.99X)

19.55 Mb (39.10X)

44.66 Mb (35.45X)

Cobbs’ [108.70u+532.81s |30.50u+76.06s n/a
87.99 Mb (65.67X)|32.93 Mb (65.85X)
Dfs (30.89u+104.17s 6.48u+0.42s 28.46u-+76.86s 6.43u+0.61s

17.66 Mb (35.32X)

Table 2. Times (in seconds) to build the indices and their space overhead. The time
is separated in the cPU part (“u”) and the 1/0 part (“s”). The space is expressed in
megabytes, and also the ratio index/text is shown in the format rX, meaning that the
index takes r times the text size.

Dfs(a), it takes 4 times less space. It is also better than the Samples index
when the pattern is short, but not when pattern partitioning is necessary.
The Samples index reaches its optimum performance for ¢ between 5 and
6, depending on the case. Unlike Myers’, this index works better on English
text than on DNA. In DNA it produces a small index (4 times smaller
than Myers’) but in general has worse search time. The index for ¢ = 5 on
English text is half the size of Myers’ index, and it also obtains good results
for medium patterns and low error levels.

Dfs(p), which works on the same data structure of Dfs(a), improves over it
when the patterns are not very short and the error level is not too high.
When applicable, its query time is by far the lowest among all the indices.

5 Conclusions and Future Work

We have presented a new indexing scheme for approximate string matching. The
main idea is to split the pattern in pieces to be searched with less errors, and use
a suffix tree to find their approximate matches in the text. Later, we verify all
their matches for an occurrence of the complete pattern. The splitting technique
balances between traversing too many nodes of the suffix tree and verifying
too many text positions. We have also shown how to traverse the suffix tree
efficiently in practice. We have proved analytically that the resulting index has
sublinear retrieval time (of the form O(n?), where 0 < A < 1 if the error level is
moderate). Finally, we have presented the first (as far as we know) experimental
results that compare the different implemented indexing schemes, which show
that the proposed idea improves over all the previously implemented approaches.

Index | k& DNA H-DNA FRA H-FRA
(m = 10) (m = 10) (m=28) (m=28)
1 131.0/21.35 55.01/15.24 59.74/17.31 29.99/9.00
On-line | 2 152.6/20.56 62.41/15.48 114.8/20.86 52.77/11.56
3 188.7/20.36 84.20/15.33 142.2/20.56 60.30/13.76
1] 0.29/1.74 0.64/2.15 7.04/8.04 6.17/7.29
Myers’ [2|| 0.97/2.18 1.53/2.74 23.5/21.4 20.2/18.2
3| 6.29/6.79 8.17/8.10 22.4/20.8 20.9/18.5
1] 1.80/6.66 1.72/5.48 0.75/2.01 0.75/1.76
Samples| 2| 9.33/26.7 9.10/23.4 3.30/9.54 2.69/2.68
(4) |3|| 30.7/93.4 25.5/73.6 13.8/30.3 13.6/26.7
1] o0.91/2.81 0.93/2.38 0.75/1.91 0.77/1.74
Samples| 2| 9.88/27.7 9.35/23.5 4.92/10.4 3.47/7.07
(5) |3|| 36.4/97.2 30.9/77.3 23.9/38.9 21.5/33.5
1] 0.90/2.71 0.93/2.35 0.89/2.06 0.86/1.82
Samples| 2| 11.3/29.4 10.9/24.6 6.81/12.5 4.81/8.99
(6) |3|| 57.3/119 49.0/92.5 39.3/52.8 38.9/47.7
1] 0.83/1.98 1.85/3.67
Cobbs’ | 2 3.85/14.9 6.04/19.1 n/a n/a
3| 17.9/84.5 21.8/79.3
1| 0.05/0.15 0.05/0.04 0.10/0.25 0.09/0.07
Dfs(a) |2| 0.88/2.72 0.71/0.57 0.37/0.96 0.27/0.22
3| 5.53/16.9 4.69/3.96 1.51/4.39 1.01/0.82

Table 3. Query time for short patterns and for 1, 2 and 3 errors. The on-line algo-
rithm shows time in milliseconds in the format “user/system”, in italics. The indexed
algorithms show the fraction they take of the time of the on-line algorithm. The format
is “a/b”, where a considers only user time and b considers both. The fastest indexed
times are in boldface.

A remaining problem is that the suffix tree data structure needs too much
space. We plan to replace it by a suffix array [21]. The suffix array contains the
leaves of the suffix tree in left-to-right order, or equivalently the pointers to all the
text suffixes in lexicographical order. The space requirement is in practice 4 times
the text size, which is reasonable. Suffix tree nodes (i.e. subtrees) correspond
to suffix array intervals. Any movement in the suffix tree can be simulated in
O(logn) time in the suffix array, and therefore the final complexity is multiplied
by O(logn) and the condition for time sublinearity is not affected. Finally, we
are still free to use the j value we like (unlike g-gram indices, which are limited
by ¢). In particular, we can easily implement specialized pattern partitioning
approaches for biased texts as in [7], where the partitioning minimizes the total
number of text positions to verify.

Index | k& DNA H-DNA FRA H-FRA
(m = 20) (m = 20) (m = 16) (m = 16)
2 184.6/22.18 75.16/16.61 60.59/17.56 29.91/9.48
On-line | 4 311.4/21.70 116.0/15.79 116.3/20.83 50.71/14.98
6 779.2/21.42 297.4/15.77 205.6/20.58 92.36/13.37
2] 0.67/1.69 0.91/1.97 7.03/8.06 10.9/10.9
Myers |4| 5.13/5.50 5.61/5.74 32.7/29.2 31.9/26.3
6| 16.9/16.8 17.7/17.3 26.5/25.0 25.2/23.1
2| 1.55/5.10 1.60/4.55 0.44/0.95 0.63/1.03
Samples| 4| 6.14/13.4 6.16/12.4 2.08/4.62 2.03/4.01
(4) |e|| 9.10/25.4 9.48/27.9 9.59/18.6 8.85/16.1
2| 0.60/1.93 0.64/1.73 0.38/0.75 0.62/0.91
Samples|4| 5.26/11.3 5.77/11.9 2.21/4.87 2.15/4.19
(5) |e|| 10.0/25.5 10.7/26.4 14.8/23.6 12.7/19.6
2| 0.31/0.83 0.41/0.84 0.39/0.70 0.60/0.91
Samples| 4| 5.61/11.7 6.18/12.1 2.71/5.13 2.51/4.42
(6) 6 15.2/31.5 15.3/30.8 22.9/31.1 19.3/25.3
2| 3.93/11.7 6.60/16.0
Cobbs’ | 4 *kx 69.5/171 n/a n/a
6 %ok 3k %ok 3k
2| 0.31/1.19 0.32/0.26 0.59/1.49 0.45/0.34
Dfs(a) |4| 6.39/30.8 4.31/3.79 4.15/14.4 2.49/1.93
6| 14.6/64.9 7.76/7.37 10.7/42.0 5.87/5.13
2| 0.09/0.23 0.08/0.07 0.22/0.43 | 0.18/0.13
Dfs(p) |4|| 3.24/6.42 2.63/2.32 0.76/1.92 | 0.61/0.47
6| 11.3/12.6 7.76/7.37 2.26/6.05 1.59/1.38

*** One single query took more than 2 hours of elapsed time.

Table 4. Query time for medium patterns and for k¥ = 2, 4 and 6. The on-line algo-
rithm shows time in milliseconds in the format “user/system”, in italics. The indexed
algorithms show the fraction they take of the time of the on-line algorithm. The format
is “a/b”, where a considers only user time and b considers both. The fastest indexed
times are in boldface.

Acknowledgements

We thank the nice comments of two referees, which helped to improve this work.
We also thank Erkki Sutinen for his code to build the suffix tree, and Gene
Myers and Archie Cobbs for sending us their implemented indices.

References

1. A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag,
New York, 1985.

2. M. Aratdjo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In
Proc. WSP’97, pages 2-20. Carleton University Press, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer
Congress, volume I, pages 465-476. Elsevier Science, September 1992.

. R. Baeza-Yates and G. Gonnet. All-against-all sequence matching. Dept. of Com-

puter Science, University of Chile, 1990.

R. Baeza-Yates and G. Gonnet. Fast text searching for regular expressions or
automaton searching on a trie. J. of the ACM, 43, 1996.

R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text
retrieval. In Proc. ACM CIKM’97, pages 1-8, 1997.

R. Baeza-Yates and G. Navarro. A practical g-gram index for text retrieval allowing
errors. CLEI Electronic Journal, 1(2), 1998. http://www.clei.cl.

. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,

23(2):127-158, 1999. Preliminary version in Proc. CPM’96, LNCS 1075.

R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-
ing. Information Processing Letters, 59:21-27, 1996.

A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas.
The samllest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31-55, 1985.

W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate
string matching algorithms. In Proc. CPM’92, LNCS 644, pages 172-181, 1992.
W. Chang and T. Marr. Approximate string matching and local similarity. In
Proc. CPM’94, LNCS 807, pages 259-273, 1994.

A. Cobbs. Fast approximate matching using suffix trees. In Proc. CPM’95, pages
41-54, 1995. LNCS 937.

M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63—-86, 1986.

M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottle-
neck in suffix tree construction. In Proc. SODA’98, pages 174-183, 1998.

Z. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM J. on Computing, 19(6):989-999, 1990.

G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin.
Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.

P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in
static texts. In Proc. MFCS’91, volume 16, pages 240-248. Springer-Verlag, 1991.
D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1973.

G. Landau and U. Vishkin. Fast parallel and serial approximate string matching.
J. of Algorithms, 10:157-169, 1989.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proc. ACM-SIAM SODA’90, pages 319-327, 1990.

U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In
Proc. USENIX Technical Conference, pages 23-32, Winter 1994.

E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12(4/5):345-374, Oct/Nov 1994.

G. Myers. A fast bit-vector algorithm for approximate pattern matching based on
dynamic progamming. In Proc. CPM’98, LNCS 1448, pages 1-13, 1998.

G. Navarro. Approzimate Text Searching. PhD thesis, Dept. of Computer Sci-
ence, Univ. of Chile, December 1998. Technical Report TR/DCC-98-14. ftp://-
ftp.dcc.uchile.cl/pub/users/gnavarro/thesis98.ps.gz.

G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pattern
matching. Technical Report TR/DCC-98-5, Dept. of Computer Science, Univ. of
Chile, 1998. Submitted.

27. S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. J. of Molecular Biology,
48:444-453, 1970.

28. P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359-373, 1980.

29. F. Shi. Fast approximate string matching with g-blocks sequences. In Proc.
WSP’96, pages 257-271. Carleton University Press, 1996.

30. E. Sutinen and J. Tarhio. On using g-gram locations in approximate string match-
ing. In Proc. ESA’95 LNCS 979, pages 327-340, 1995.

31. E. Sutinen and J. Tarhio. Filtration with g-samples in approximate string match-
ing. In Proc. CPM’96, LNCS 1075, pages 50-61, 1996.

32. J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM J.
on Computing, 22(2):243-260, 1993.

33. E. Ukkonen. Approximate string matching over suffix trees. In Proc. CPM’93,
pages 228-242, 1993.

34. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132—
137, 1985.

35. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83-91, October 1992.

36. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50-67, 1996.

Appendix: Probability of Reaching a Suffix Tree Node

We need to determine which is the probability of the automaton being active at
a given node of depth £ in the suffix tree. Notice that the automaton is active if
and only if some state of the last row is active (recall Figure 1). This is equivalent
to some prefiz of the pattern matching with & errors or less the text substring
represented by the suffix tree node under consideration.

We are therefore interested in the probability of a pattern prefix of length
m' matching a text substring of length £. This analysis is an extension of that
of [8]. As Figure 7 illustrates, at least £ — k text characters text must match the
pattern when £ > m/', and at least m’ — k pattern characters must match the
text whenever m’ > £. Hence, the probability of matching is upper bounded by

1 ¢ m/ 1 ¢ m/
- or -
o=kl —k)\L—k o™=k \m' — k) \m' —k

depending on whether £ > m' or m' > £, respectively (the combinatorials count
all the possible locations for the matching characters in both strings). Notice that
this imposes that m' — k < { < m' + k. We also assume m' > k, since otherwise
the matching probability is 1. Since £ < m' < m, we have that £ < m + k,
otherwise the matching probability is zero. Hence the matching probability is 1
for £ < k and 0 for £ > m+k, and we are interested in what happens in between.

Since we are interested in any pattern prefix matching the current text sub-
string, we add up all the possible lengths from % to m:

i 0'%’“ <zf k> <Zn_sz> * i om;—k <m’z— k> <mlm_l k>

m'=k m!=L+1

Text substring

Pattern: m’=9, k=5

m At least 9-5=4 matches

Fig. 7. Upper bound for the probability of matching. At least max(m' — k,£ — k)
characters must match, since otherwise it would not be possible to convert one string
into the other.

In the analysis that follows, we call 8 = k/¢, where /(1 4+ o) < 5 < 1. We
will prove that, after some depth £ in the suffix tree, the matching probability
is O(y(B)*), for some ¥(B) < 1. We begin with the first summation. We analyze
its largest term (the last one), which is

AN
ot=k\k

and by using Stirling’s approximation z! = (z/e)*v/27z(1 + O(1/z)) we have

= (kk(z - k)l—ilx/\/;TTlf\/W) <1 o G))
which is
1 1

(s as) ©* (=m0 (1))

where the last step is done using Stirling’s approximation to the factorial. This
formula is of the form v(8)* O(1/£), where we define

V(=) = 0-1—2:622(11_:6)2(1—2) (1)

The whole first summation is bounded by £—k times the last term, which gives
(£ — k)y(B) 0(1/£) = O(7(B)*). Therefore the first summation is exponentially
decreasing with £ if and only if v(3) < 1, i.e.

1 e 1
A (1 - p)20=p) pTR(1-)2
It is easy to show analytically that e~ < ,8% <1if0< B <1,so0it suffices
that o > e?/(1 — B)?, or equivalently

(2)

o >

g < 1- (3)

=t

is a sufficient condition for the largest (last) term to be O(vy(B)*), as well as the
whole first summation.

We address now the second summation, which is more complicated. In this
case, it is not clear which is the largest term. We can see each term as

1 [0\ (k+r
=) ()
where £ — k < r < m — k. By considering » = z¢ (z € [1 — 8, m/¢ — f]) and
applying again Stirling’s approximation, we maximize the base of the resulting
exponential, which is
z+
o) = i
o®z?*(1 — g)l-=0P
Elementary calculus leads to solve a second-degree equation that has roots
in the interval [1— 3, co) only if o < 8/(1—3)2. Since due to Eq. (3) we are only
interested in o > 1/(1 — B)%, §h(z)/dz does not have roots, and the maximum
of h(z) is at # = 1 — 8. That means r = £ — k, i.e. the first term of the second
summation, which is the same largest term of the first summation.
We conclude that the probability of being active at a node of level £ is upper

bounded by
by <1+0<%>> = 0 (v(8)")

and therefore Eq. (3) is valid for the whole summation. When v(3) is 1, the
probability is very high: only considering the term m' = £ we have 2(1/£).

Hence, the result is that the matching probability is very high for 8 = k/¢ >
1— e/+/c, and otherwise it is O(y(5)*), where v(8) < 1.

Although the e appeared via a bounding condition, we can see that this
bound is tight: we take log, on both sides of the condition v(3) < 1 and get

1—5+2(Blog,f+(1-p)log,(1-05)) > 0
and by replacing z = 1 — 3 and using In(1 — z) = —z + O(z?) we have

:cln0'+2(:cln:c—(l—m)(:c—l—O(:cz)) = :cln0'+2:cln:c—2:c—|—0(:cz) > 0

from where divide by z to obtain

T ieo(z) - = T - ¢ o
- S (140() = <= (1+0(/vE))

We conclude that the precise limit for 3 =1 — z is
B < 1-—= + 0(1/0)

Z3
As we show experimentally in [8], however, the real § limit is very close to
the same formula if e is replaced by ¢ = 1.09. The reason is that the bounding
condition (Figure 7) we use is not strong enough: for instance, we could avoid
replacements in the edit distance and the bound would be the same. In the paper
we use a limit of the form 8 = 1 — ¢/+/0, knowing that we can prove ¢ < e but
in practice it holds ¢ ~ 1.

S

