
A New Indexing Methodfor Approximate String Matching ?Gonzalo Navarro and Ricardo Baeza-YatesDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstract. We present a new indexing method for the approximatestring matching problem. The method is based on a su�x tree combinedwith a partitioning of the pattern. We analyze the resulting algorithmand show that the retrieval time is O(n�), for 0 < � < 1, whenever� < 1� e=p�, where � is the error level tolerated and � is the alphabetsize. We experimentally show that this index outperforms by far all otheralgorithms for indexed approximate searching, also being the �rst exper-iments that compare the di�erent existing schemes. We �nally show howthis index can be implemented using much less space.1 IntroductionApproximate string matching is a recurrent problem in many branches of com-puter science, with applications to text searching, computational biology, patternrecognition, signal processing, etc.The problem is: given a long text of length n, and a (comparatively short)pattern of length m, retrieve all the text segments (or \occurrences") whose editdistance to the pattern is at most k. The edit distance between two strings is de-�ned as the minimum number of character insertions, deletions and replacementsneeded to make them equal. We de�ne the \error level" as � = k=m.In the on-line version of the problem, the pattern can be preprocessed butthe text cannot. The classical solution uses dynamic programming and is O(mn)time [27,28]. A number of algorithms improved later this result [34, 20,16, 11,35,32, 12, 30, 36, 9, 8, 24]. The lower bound of the on-line problem (proved andreached in [12]) is O(n(k+ log�m)=m), which is of course 
(n) for constant m.If the text is large even the fastest on-line algorithms are not practical, andpreprocessing the text becomes necessary. However, just a few years ago, index-ing text for approximate string matching was considered one of the main openproblems in this area [35,3]. Despite some progress in the last years, the indexingschemes for this problem are still rather immature.There are two types of indexing mechanisms for approximate string match-ing, which we call \word-retrieving" and \sequence-retrieving". Word retrieving? This work has been supported in part by Fondecyt grant 1-990627 and Fondef grant96-1064.



indices [22, 6, 2] are more oriented to natural language text and information re-trieval. They can retrieve every word whose edit distance to the pattern is atmost k. Hence, they are not able to recover from an error involving a separator,such as recovering the word "flowers" from the misspelled text "flo wers"or from "manyflowers", if we allow one error1. These indices are more mature,but their restriction can be unacceptable in some applications, especially wherethere are no words (as in DNA) or in agglutinating languages such as Finnishor German.Our focus in this paper is sequence retrieving indices. Among these, we �ndtwo types of approaches.A �rst type is based on simulating a sequential algorithm, but running iton the su�x tree [19,1] or DAWG [14, 10] of the text instead of the text itself.Since every di�erent substring in the text is represented by a single node in thetree or the DAWG, it is possible to avoid redoing the same work when the texthas repetitions. Those indices take O(n) space and construction time, but theirconstruction is not optimized for secondary memory and is very ine�cient inthis case (see, however, [15]). Moreover, the structure is very ine�cient in spacerequirements, since it takes 12 to 70 times the text size.In [18, 33, 13], di�erent algorithms that traverse the least possible nodes inthe su�x tree (or in the DAWG) are presented. The idea is to traverse all thedi�erent tree nodes that represent \viable pre�xes", which are text substringsthat can be pre�xes of an approximate occurrence of the pattern.In [17], a simpli�ed version of the above technique was independently pro-posed, consisting of a limited depth-�rst search (DFS) on the su�x tree. Sinceevery substring of the text (i.e. every potential occurrence) can be found fromthe root of the su�x tree, it is su�cient to explore every path starting at theroot, descending by every branch up to where it can be seen that that branchdoes not represent the beginning of an occurrence of the pattern. This algorithminspects more nodes than the previous ones, but it is simpler. For instance, withan additional O(logn) time factor, the algorithm runs on su�x arrays, whichtake 4 times the text size instead of 12. This algorithm was analyzed in [4].The second type of sequence-retrieving indices is based on adapting an on-line�ltering algorithm. The �lters are based in matching substrings of the patternswithout errors, and checking for potential occurrences around those matches.The index is used to quickly �nd those substrings, and is based on storing sometext q-grams (substrings of length q) and their positions in the text.Di�erent �ltration indices [23,31, 29, 7] di�er mostly in how the text is sam-pled (distance between consecutive text samples, whether they overlap or not,etc.), in how the pattern is sampled, in how many matching samples are neededto verify their neighborhood in the text, etc. Depending on this and on q theyachieve di�erent space-time tradeo�s. In general, �ltration indices are muchsmaller than su�x trees (1 to 10 times the text size), although they are lesstolerant to the error level �. They can also be built in linear time.1 Although some, like Glimpse [22], can match the pattern inside a text word.



Somewhat special is [23], because it does not reduce the search to exact but toapproximate search of pattern pieces. To search for a pattern of length m � q�k,all the maximal strings with edit distance � k to the pattern are generated andsearched in the set of q-grams. Later, all the occurrences are merged. Longerpatterns are split in as many pieces as necessary to make them short enough.In this paper we present a hybrid indexing scheme for this problem. It usesa su�x tree, where the pattern is partitioned in subpatterns which are searchedwith less errors in su�x tree. All the occurrences of the subpatterns are later ver-i�ed for a complete match. The goal is to balance between the cost to search inthe su�x tree (which grows with the size of the subpatterns) and the cost to ver-ify the potential occurrences (which grows when shorter patterns are searched).This method shows experimentally to be by far superior to all other implementedproposals, and we show analytically that the average retrieval time can be madeO(n2(�+H�(�))=(1+�)), where H�(�) is the base-� entropy function. This is sub-linear for � < 1�e=p�. This limit on � cannot probably be improved [8, 25]. We�nally propose an alternative data structure to reduce the space requirementsof the su�x tree, with little time penalty.2 Combining Su�x Trees and Pattern PartitioningWe present now our alternative proposal. The general idea is to partition thepattern in pieces, search each piece in the su�x tree in the classical way, andcheck all the positions found for a complete match. We �rst consider how tosearch a piece in the su�x tree and later address the pattern partitioning issue.2.1 DFS Using a Bit-parallel AutomatonLet us consider the existing algorithms to traverse the su�x tree. While [33,13] minimize the number of nodes traversed, [17] is simpler but inspects morenodes. We show that [17], thanks to its simplicity, can be adapted to use a nodeprocessing algorithm which is faster than dynamic programming, namely ouron-line algorithm of [8]2. The tradeo� is: we can explore less nodes at highercost per node or more nodes at less cost per node. We show later experimentallythat this last alternative is much faster when [8] is used to process the nodes.We recall that the idea of [17] is a limited depth-�rst search on the su�xtree, starting at the root and stopping when it can be seen that the current textsubstring cannot start an approximate pattern occurrence. No text occurrencecan be missed because every text substring can be found starting from the root.More speci�cally, we compute the edit distance between the tree path and thepattern, and if at some node the distance is � k we know that the text substringrepresented by the node matches the pattern. We report all the leaves of thesu�x tree which descend from those nodes, since their text positions start withthe matching substring. On the other hand, when we can determine that the2 Probably [24] would also �t well.



edit distance cannot be as low as k, we abandon the path. This surely happensat depth m + k + 1 but normally happens before.We implement this traversal using our algorithm of [8] instead of dynamicprogramming. This algorithm uses bit parallelism to simulate a non-deterministic�nite automaton (NFA) that recognizes the approximate pattern. We modify thisautomaton to compute edit distance (removing the initial self-loop it has in [8]).Figure 1 shows the automaton to recognize "patt" with k = 2 errors. Everyrow denotes the number of errors seen. Every column represents matching a pat-tern pre�x. Horizontal arrows represent matching a character (i.e. if the patternand text characters match, we advance in the pattern and in the text). All theothers increment the number of errors (move to the next row): vertical arrowsinsert a character in the pattern (we advance in the text but not in the pattern),solid diagonal arrows replace a character (we advance in the text and pattern),and dashed diagonal arrows delete a character of the pattern (they are emptytransitions, since we advance in the pattern without advancing in the text). Theautomaton signals (the end of) a match whenever a rightmost state is active. Ifwe do not care about the number of errors of the occurrences, we can consider�nal states those of the last full diagonal.
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�rst full diagonal, since now it will not be always active. We start the automatonwith only this �rst full diagonal active, and traverse the su�x tree path untilthe automaton runs out of active states or the lower right state is activated.The simulation of this automaton needs (m � k + 1)(k + 2) bits. If we callw the number of bits in the computer word, then when the previous numberis � w we can put all the states in a single computer word and work O(1) pertraversed node of the su�x tree. For longer patterns, the automaton is split inmany computer words, at a cost of O(k(m � k)=w). For moderate-size patternsthis improves over dynamic programming, which costs O(m) per su�x tree node.This bit-parallel variation is only possible because of the simplicity of thetraversal. For instance, the idea does not work on the more complex setup of[33,13], since these need some adaptations of the dynamic programming algo-rithm that are not easy to parallelize. Note that this algorithm can be seen as aparticular case of automaton searching over a trie [5].2.2 Partitioning the PatternIt is well known [33, 4] that the search cost using the su�x tree grows exponen-tially with m and k, no matter which of the two techniques we use (optimumtraversal or DFS). Hence, we prefer that m and k are small numbers. We presentin this section a new technique based in partitioning the pattern, so that thepattern is split in many sub-patterns which are searched in the su�x tree, andtheir occurrences are directly veri�ed in the text for a complete match. We showin the experiments that this technique outperforms all the others.This method is based on the pattern partitioning technique of [23,8]. Thecore of the idea is that, if a pattern of length m occurs with k errors and wesplit the pattern in j parts, then at least one part will appear with bk=jc errorsinside the occurrence. In fact, the case j = k + 1 is the basis for the algorithm[9] and the q-gram index [7].The new algorithm follows. We evenly divide the pattern in j pieces (j isunspeci�ed by now). Then we search in the su�x tree the j pieces with bk=jcerrors using the algorithm of Section 2.1. For each match found ending at textposition i we check the text area [i�m � k::i+m+ k].The reason why this idea works better than a simple su�x tree traversalwith the complete pattern is that, since the search cost on the su�x tree isexponential in m and k, it may be better to perform j searches of patterns oflength m=j and k=j errors. However, the larger j, the more text positions haveto be veri�ed, and therefore the optimum is in between. In the next section we�nd analytically the optimum j and the complexity of the searchOne of the closest approaches to this idea is Myers' index [23], which collectsall the text q-grams (i.e. prunes the su�x tree at depth q), and given the patternit generates all the strings at distance at most k from it, searches them in theindex and merges the results. This is the same work of a su�x tree providedthat we do not enter too deep (i.e. m + k � q). If m + k > q, Myers' approachsplits the pattern and searches the subpatterns in the index, checking all thepotential occurrences. The main di�erence with our proposed approach is that



Myers' index generates all the strings at a given distance and searches them,instead of traversing the structure to see which of them exist. This makes thatapproach degrade on biased texts, where most of the generated q-grams do notexist (in the experimental section we show that it works well on DNA but quitebad on English). Moreover, we split the pattern to optimize the search cost,while the splitting in Myers' index is forced by indexing constraints (i.e. q).3 Analysis3.1 Searching One PieceAn asymptotic analysis on the performance of a depth-�rst search over su�xtrees is immediate if we consider that we cannot go deeper than level m + ksince past that point the edit distance between the path and our pattern islarger than k and we abandon the search. Therefore, we can spend at mostO(�m+k) time, which is independent on n and hence O(1). Another way to seethis is to use the analysis of [5], where the problem of searching an arbitraryautomaton over a su�x trie is considered. Their result for this case indicatesconstant time (i.e. depending on the size of the automaton only) because theautomaton has no cycles.However, we are interested in a more detailed average analysis, especially thecase where n is not so large in comparison to �m+k. We start by analyzing whichis the average number of nodes at level ` in the su�x tree of the text, for small`. Since almost all su�xes of the text are longer than ` (i.e. all except the last`), we have nearly n su�xes that reach that level. The total number of nodes atlevel ` is the number of di�erent su�xes once they are pruned at ` characters.This is the same as the number of di�erent `-grams in the text. If the text israndom, then we can use a model where n balls are thrown into �` urns, to �ndout that the average number of �lled urns (i.e. su�x tree nodes at level `) is�` �1� �1� 1=�`�n� = �` �1� e��(n=�`)� = � �min �n; �`��which shows that the average case is close to the worst case: up to level log� nall the possible �` nodes exist, while for deeper levels all the n nodes exist.We also need the probability of processing a given node at depth ` in thesu�x tree. In the Appendix we prove that the probability is very high for � =k=` � 1 � c=p� (Eq. (3)), and otherwise it is O(
(�)`), where 
(�) < 1. Theconstant c can be proven to be smaller than e = 2:718:::, and is empiricallyknown to be close to 1. The 
(x) function (Eq. (1)) is 1=(�1�xx2x(1�x)2(1�x)),which goes from 1=� to 1 as x goes from 0 to 1� c=p�.Therefore, we pessimistically consider that in levels` � L(k) = k1� c=p� = O(k)all the nodes in the su�x tree are visited, while nodes at level ` > L(k) arevisited with probability O(
(k=`)`), where 
(k=`) < 1. Finally, we never work



past level m + k. We are left with three disjoint cases to analyze, illustrated inFigure 2.
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Fig. 2. The upper left �gure shows the visited parts of the tree. The rest shows thethree disjoint cases in which the analysis is split.(a) L(k) � log� n, i.e. n � �L(k), or \small n"In this case, since on average we work on all the nodes up to level log� n,the total work is n, i.e. the amount of work is proportional to the text size.This shows that the index simply does not work for very small texts, beingan on-line search preferable as expected.(b) m + k < log� n, i.e. n > �m+k or \large n"In this case we traverse all the nodes up to level L(k), and from there on wework at level ` with probability 
(k=`)`, until ` = m + k. Under case (b),there are �` nodes at level `. Hence the total number of nodes traversed isL(k)X̀=0 �` + m+kX`=L(k)+1 
(k=`)`�`where the �rst term is O(�L(k)). For the second term, we see that 
(x) > 1=�,and hence (
(k=`)�)` > 1. More precisely,(
(k=`)�)` = �k`2`k2k(`� k)2(`�k)



which grows as a function of `. Since (
(k=`)�)` > 1, we have that even if itwere constant with `, the last term would dominate the summation. Hence,the total cost in case (b) is�L(k) + �k(1 + �)2(m+k)�2kwhich is independent of n.(c) L(k) < log� n � m + k, i.e. \intermediate n"In this case, we work on all nodes up to L(k) and on some nodes up to m+k.The formula for the number of visited nodes isL(k)X̀=0 �` + log�(n)�1X`=L(k)+1 
(k=`)`�` + m+kX`=log� n
(k=`)`nThe �rst sum is O(�L(k)). For the second sum, we know already that the lastterm dominates the complexity (see case (b)). Finally, for the third sum wehave that 
(k=`) decreases as ` grows, and therefore the �rst term dominatesthe rest (which would happen even for a constant 
).Hence, the case ` = log� n dominates the last two sums. This term isn
(k= log� n)log� n = �k(log� n)2 log� nk2k(log�(n) � k)2(log�(n)�k) = �k(log� n)2kk2k (1+o(1))(this can be bounded by (�(1 + 1=�)2)k by noticing that we are inside case(c), but we are interested in how n a�ects the growth of the cost).The search time is then sublinear for log� n > max(L(k);m+ k), or which isthe same, � < max(log�(n)=m (1� c=p�); log�(n)=m� 1). Figure 3 illustrates.log� nmp�=cp�c �1� 1
Fig. 3. Area of sublinearity for su�x tree traversal.



3.2 Pattern PartitioningWhen pattern partitioning is applied, we perform j searches of the same kind ofSection 2.1, this time with patterns of length m=j and k=j errors. We also needto verify all the possible matches.As shown in [8], the matching probability for a text position is O(
(�)m),where 
(�) is that of Eq. (1). From now on we use 
 = 
(�). Using dynamicprogramming, a veri�cation costs O(m2) 4. Hence, our total search cost isj � suffix tree traversal(m=j; k=j) + j � 
m=jm2nand we want the optimum j. First, notice that if 
 = 1 (that is, � � 1�c=p�), theveri�cation cost is as high as an on-line search and therefore pattern partitioningis useless. In this case it may be better to use plain DFS. In the analysis thatfollows, we assume that 
 < 1 and hence � < 1� c=p�.According to Section 3.1, we divide the analysis in three cases. Notice thatnow we can adjust j to select the best case for us.(a) �L(k=j) � n, or j log� n � k=(1� c=p�)In this case the search cost is 
(n) and the index is of no use.(b) �(m+k)=j < n, or j log� n > m+ kIn this case the total search cost isj ��L(k=j) + �k=j(1 + �)2(m+k)=j�2k=j + 
m=jm2n�where the �rst two terms decrease and the last one increases with j. Sincea + b = �(max(a; b)), the minimum order is achieved when increasing anddecreasing terms meet. When equating the �rst and third terms we obtainthat the optimum j isj1 = mlog�(m2n) � �1� c=p� + log�(1=
)�and the complexity (only considering n) is O �n�=(�+(1�c=p�) log�(1=
))�.On the other hand, if we equate the second and third term, the best j isj2 = mlog�(m2n) (1 + 2((1 + �) log�(1 + �) + (1 � �) log�(1� �)))and the complexity is O �n1�log�(1=
)=(1+2((1+�) log�(1+�)+(1��) log�(1��)))�.In any case, we are able to achieve a sublinear complexity of O(n�), where� = max( ��+(1�c=p�) log�(1=
) ; 1� log�(1=
)1+2((1+�) log�(1+�)+(1��) log�(1��)))Which of the two complexities dominates yields a rather complex conditionthat depends on the error level �, but in both cases � < 1 if � < 1� c=p�.4 It can be done in O((m=j)2) time [23, 26], but this does not a�ect the result here.



If � is large enough (� � 24 for c = e), the complexity corresponding toj2 always dominates. However, it is possible that j1 or j2 are outside thebounds of case (b) (i.e. they are too small). In this case we would use theminimum possible j = (m + k)= log� n, and the third term would dominatethe cost, for an overall complexity of O(n1�log�(1=
)=(1+�)). This complexityis also sublinear if � < 1� c=p�.(c) �L(k=j) < n � �(m+k)=j , or k=(1� c=p�) < j log� n � m + kThe search cost in this intermediate case isj��L(k=j) + �k=j(log� n)2k=j(k=j)2k=j + 
m=jm2n�where the �rst two terms decrease with j and the last one increases. Repeat-ing the same process as before, we �nd that the �rst and third term meetagain at j = j1 with the same complexity. We could not solve exactly wherethe second and third term meet. We foundj3 = m(� + 2� log� log� n+ log� 1
 � 2� log� mj3 )log�(m2n) � m(�+ log� 1
 )log�(m2n)and since the solution is approximate, the terms are not exactly equal at j3.The second term is O �n�(1+2 log�(1=
))=(�+log�(1=
))�, slightly higher thanthe third. Again, it is possible that j3 is out of the bounds of case (c) andwe have to use the same limiting value as before.The conclusion is that, despite that the exact formulation is complex, we havesublinear complexity for � < 1 � c=p�, as well as formulas for the optimum jto use, which is �(m= log� n) with a complicated constant.For larger � values the pattern partitioning method gives linear complexityand we need to resort to the traditional su�x tree traversal (j = 1). As shownin [8, 25], it is very unlikely that this limit of 1 � c=p� can be improved, sincethere are too many real approximate occurrences in the text.An interesting fact that is shown in the experiments is that in many casesthe optima are out of bounds and hence the best is to put j in the limit of cases(b) and (c), just where the search of the subpieces become full searches. Thisshows that a technique that is simple and the best choice in most cases is toselect j = (m+ k)= log� n, for a complexity ofO �n1� log�(1=
)1+� � = O �n 2(�+H� (�))1+� �where H�(�) = �� log� �� (1� �) log�(1 � �) is the base-� entropy function.3.3 The Limits of the MethodLet us pay some attention to the limits of our hybrid method (Figure 4).Since j = �(m= log� n), the best j becomes 1 (i.e. no pattern partitioning)when n > ��(m) (this is because the cost of veri�cations dominates over su�x



tree traversal). The best j is � k+1 for n < ��(1=�). Since in this case we searchthe pieces with zero errors (i.e. bk=(k + 1)c = 0, recall Section 2.2), the searchin the su�x tree costs O(m), and later we have to verify all their occurrences.This is basically what the q-gram index of [7] does, except it prunes the su�xtree at depth q.Finally, the only case where the index is not useful is when n is very small.We can increase j to be more resistant to small texts, but the limit is j = k+1,and using that j the index ceases to be useful for n < � 11�c=p� � �1=�. We havealso to keep sublinear the cost of veri�cations, i.e. n
1=� = o(1), which happensfor � < 1= log1=
 n. This requires, in particular, that m = 
(log n).(hybrid index)intermediatej no partit.j = 1�1=� ��(1=�) ��(m)usefulnothing maximalj = k+1 nFig. 4. The j values to be used according to n.This last consideration helps also to understand how is it possible to have asublinear-time index based on �ltering when there is a �xed matching probabilityper text position (
m), and therefore the veri�cation cost must be 
(n). Thetrick is that in fact we assume m = 
(log n), that is, we have to search longerpatterns as the text grows. As we can tune j, we softly move to j = 1 (theneliminating veri�cation costs) when n becomes large with respect to m. This\trick" is also present in the sublinearity result of Myers' index [23], and implicitin similar results on natural language texts [6, 25].4 Experimental ResultsWe �rst validate some of the analytical results of the paper and later compareour indices against the other existing proposals. We used two di�erent texts:{ DNA text (\h.in
uenzae"), a 1.34 Mb �le. This �le is called dna in our tests,and h-dna is the �rst half megabyte of it. In this case � = 4.{ English literary text (from B. Franklin), �ltered to lower-case and the sep-arators converted into a single space. This text has 1.26 Mb, and is calledfra in the experiments. h-fra is the �rst half megabyte of fra. Given howthe analysis uses the � value, it is unrealistic to set it to the alphabet size,because the text is biased. It is much better to consider that 1=� must bethe probability that two random letters are equal. This sets � = 12:85.The texts are rather small, in some cases too small to appreciate the speedupobtained with some indices. This is because we had RAM problems to buildsu�x trees for larger texts. However, the experiments still serve to obtain basicperformance numbers on the di�erent indices.



We have tested short and medium-size patterns, searching with 1, 2 and 3errors the short ones and with 2, 4 and 6 the medium ones. The short patternswere of length 10 for DNA and 8 for English, and the medium ones were of length20 and 16, respectively5 . We selected 1000 random patterns from each �le anduse the same set for all the k values of that length, and for all the indices.4.1 Validating the AnalysisWe �rst show that the su�x tree traversal has sublinear complexity. We built thesu�x tree of incremental pre�xes of fra and dna, from 100 Kb to 800 Kb (largertexts start to give i/o problems that disturb the cpu measures). According toour analysis, the m, k and � values used correspond to intermediate text sizes(case (b) of Section 3.1) for n = 4Kb..4Mb on dna and for n = 40Kb..8Gbon fra. Hence, we are clearly in case (b) in all our experiments. The analysispredicts a complexity of O((logn)2k).Figure 5 shows the user time as n grows, from where the sublinearity is clear.We have used least squares with the model t = a ln(n)b to �nd out the empiricalcomplexity and present it compared to the analytical complexity. The error ofthe approximation is always below 5%. We see that the analysis approximatesreasonably the empirical results, despite the many simpli�cations done.We consider now the optimal j value for pattern partitioning. Table 1 presentsthe query time using di�erent j values in our index, for the fra, h-fra, dna,and h-dna texts. As it can be seen, there are big di�erences in time depending onj, and the optimum is a rather small j value (always 1 on short patterns). Thismatches reasonably our formulas. In fact, once properly rounded, our analysisrecommends the correct j values. As mentioned before, the relevant value isalways in the limit between cases (b) and (c).Figure 6 shows the user time for long patterns, as n grows, using patternpartitioning with j = 2. This time we have used least squares with the modelt = anb. The error of the approximation is always below 2%. It can be seenthat also in this case the analysis approximates reasonably the empirical results,slightly overestimating in most cases. The combination dna (20,6) is not includedbecause it takes too long and already the case (20,4) was clearly linear.4.2 Comparison Against OthersWe compare our index with the other existing proposals. However, as the taskto program an index is rather heavy, we have only considered the other indicesthat are already implemented. The indices included in this comparison areMyers': The index proposed by Myers [23]. We use the implementation of theauthor, which works for some m values only (that depend on � and n).5 This is because of the restrictions of Myers' index intersected with our interest inmoderate-length patterns.
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Fig. 5. User query time (in milliseconds) for short patterns as n grows for k = 1 to 3,using j = 1. On the top right, the empirical and analytical exponent of log n.Cobbs': The index proposed by Cobbs [13]. We use the implementation of theauthor, not optimized for space. The code is restricted to work on an alphabetof size 4 or less, so it is only built on DNA.Samples(q): Our index based on q-grams presented in [7]. We show the resultsfor q = 4 to 6.Dfs(a=p): Our new index based on su�x trees. We show the results for the basetechnique (a) and pattern partitioning (p) with optimal j.In particular, approximate searching on other q-gram indices [31] is not yetimplemented and therefore is excluded from our tests. We know, however, thattheir space requirements are low (close to a word-retrieving index), but also thatsince the index simulates the on-line algorithm [30], its tolerance to errors isquite low (see [8,25], for example).All the indices were set to show the matches they found, in order to put themin a reasonably real scenario. We present the time to build the indices and thespace they take in Table 2.



Text (10; 1) (10; 2) (10; 3) (20; 2) (20; 4) (20; 6)dna 1: 6.81 1: 134.4 1: 1044 1: 56.81 1: 1989 1: 100752: 2391 2: 2585 2: 2756 2: 15.80 2: 1033 2: 95253: 802.8 3: 1010 3: 88414: 5862 4: 39077h-dna 1: 2.71 1: 44.29 1: 394.6 1: 23.72 1: 499.9 1: 23082: 645.0 2: 715.3 2: 860.4 2: 6.01 2: 305.2 2: 24823: 232.7 3: 305.9 3: 24644: 1520 4: 10339Text (8; 1) (8; 2) (8; 3) (16; 2) (16; 4) (16; 6)fra 1: 6.11 1: 42.82 1: 215.2 1: 35.98 1: 482.9 1: 22042: 180.6 2: 1754 2: 19600 2: 13.30 2: 88.22 2: 464.03: 90.71 3: 736.6 3: 4718h-fra 1: 2.68 1: 14.28 1: 60.91 1: 13.39 1: 126.4 1: 542.42: 61.43 2: 601.1 2: 4920 2: 5.30 2: 30.70 2: 146.43: 32.72 3: 255.5 3: 1538Table 1. User query time (in milliseconds) for di�erent (m;k) values (heading rows).Inside each cell we show the cost for di�erent j values. The optimum is in boldface.The �rst clear result of the experiment is that the space usage of the indicesis very high. In particular, the indices based on su�x trees (Dfs and Cobbs')take 35 to 65 times the text size. This outrules them except for very small texts(for instance, building Cobbs' index on 1.34 Mb took 12 hours of real time in ourmachine of 64 Mb of RAM). From the other indices, Myers' took 7-9 times thetext size, which is much better but still too much in practice. The best optionin terms of space is the Samples index, which takes from 1.5 to 7 times the textsize, depending on q and �. The larger q or �, the larger the index. Samples(5),which takes 2-5 times the text size, performs well at query time.Compared to its size, Myers' index was built very quickly. The Dfs index, onthe other hand, was built faster than Cobbs'. Notice that su�x trees are builtquickly when they �t in RAM (as in the half-megabyte texts), but for largertexts the construction time is dominated by the i/o, and it increases sharply.We consider now query time. Tables 3 and 4 present a comparison betweenthe di�erent indices, using for Dfs(p) the optimum j value of Table 1 (only formedium patterns, since for short ones Dfs(a) is always better). The system timeis included because it is dominant in many cases. We include also the time ofon-line searching for comparison purposes (we use the fastest on-line algorithmfor each case). The results clearly show a number of facts.{ The indices work well only for moderate error levels. For larger texts the ratioindexed/on-line should improve. However, when i/o time is considered manyindices seem useless, and it is not so clear that this improves for larger texts.This depends on the amount of main memory available, and is a consequenceof most indices not being designed to work on secondary memory. This is avery important issue that has been rarely addressed.
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Fig. 6. User query time (in milliseconds) for medium patterns as n grows for k = 2 to6, using j = 2. On the top right, the empirical and analytical exponent of n.{ Our strategy Dfs(a) of using a simpler traversal algorithm on the su�x treeand in return using a faster search algorithm de�nitively pays o�, since ourimplementation is 3 to 40 times faster than Cobbs', and it is the fastestchoice for small m and k values. Independently of this fact, the su�x treeindices improve on larger alphabets, but they are much more sensitive to thegrowth of m or k. In fact, the di�erences between fra and dna are due tothe di�erent values of m used. The big problem with this type of index is ofcourse the huge space requirements it poses.{ Myers' index behaves better on short patterns, when less splitting is neces-sary. It works well for DNA but it worsens on English text. We conjecturethat the non-randomness may play a role here: the index takes internallyq = log� n to avoid searching a number of nonexistent samples that are atdistance k or less from the pattern (in our case it took q = 10 for DNA andq = 4 for English). However, in biased texts like English, a lot of q-grams arenot present anyway, and the index pays to search all of them. For DNA theindex is a good alternative, since although it is up to 13 times slower than



Index dna h-dna fra h-fraMyers' 5.84u+0.35s 2.08u+0.12s 5.22u+0.34s 2.01u+0.12s10.68 Mb (7.97X) 4.50 Mb (9.00X) 9.39 Mb (7.46X) 4.18 Mb (8.35X)Samples 5.53u+0.19s 1.95u+0.10s 15.05u+0.41s 5.90u+0.24s(4) 2.04 Mb (1.52X) 0.77 Mb (1.53X) 3.48 Mb (2.77X) 1.48 Mb (2.98X)Samples 7.37u+0.24s 2.62u+0.08s 20.82u+0.70s 8.70s+0.35s(5) 2.48 Mb (1.85X) 0.94 Mb (1.87X) 5.18 Mb (4.11X) 2.32 Mb (4.65X)Samples 10.53u+0.32s 3.88u+0.13s 32.86u+1.34s 13.19u+0.97s(6) 2.90 Mb (2.16X) 1.11 Mb (2.23X) 7.65 Mb (6.07X) 3.54 Mb (7.07X)Cobbs' 108.70u+532.81s 30.50u+76.06s n/a87.99 Mb (65.67X) 32.93 Mb (65.85X)Dfs 30.89u+104.17s 6.48u+0.42s 28.46u+76.86s 6.43u+0.61s52.25 Mb (38.99X) 19.55 Mb (39.10X) 44.66 Mb (35.45X) 17.66 Mb (35.32X)Table 2. Times (in seconds) to build the indices and their space overhead. The timeis separated in the cpu part (\u") and the i/o part (\s"). The space is expressed inmegabytes, and also the ratio index/text is shown in the format rX, meaning that theindex takes r times the text size.Dfs(a), it takes 4 times less space. It is also better than the Samples indexwhen the pattern is short, but not when pattern partitioning is necessary.{ The Samples index reaches its optimum performance for q between 5 and6, depending on the case. Unlike Myers', this index works better on Englishtext than on DNA. In DNA it produces a small index (4 times smallerthan Myers') but in general has worse search time. The index for q = 5 onEnglish text is half the size of Myers' index, and it also obtains good resultsfor medium patterns and low error levels.{ Dfs(p), which works on the same data structure of Dfs(a), improves over itwhen the patterns are not very short and the error level is not too high.When applicable, its query time is by far the lowest among all the indices.5 Conclusions and Future WorkWe have presented a new indexing scheme for approximate string matching. Themain idea is to split the pattern in pieces to be searched with less errors, and usea su�x tree to �nd their approximate matches in the text. Later, we verify alltheir matches for an occurrence of the complete pattern. The splitting techniquebalances between traversing too many nodes of the su�x tree and verifyingtoo many text positions. We have also shown how to traverse the su�x treee�ciently in practice. We have proved analytically that the resulting index hassublinear retrieval time (of the form O(n�), where 0 < � < 1 if the error level ismoderate). Finally, we have presented the �rst (as far as we know) experimentalresults that compare the di�erent implemented indexing schemes, which showthat the proposed idea improves over all the previously implemented approaches.



Index k dna h-dna fra h-fra(m = 10) (m = 10) (m = 8) (m = 8)1 131.0/21.35 55.01/15.24 59.74/17.31 29.99/9.00On-line 2 152.6/20.56 62.41/15.48 114.8/20.86 52.77/11.563 188.7/20.36 84.20/15.33 142.2/20.56 60.30/13.761 0.29/1.74 0.64/2.15 7.04/8.04 6.17/7.29Myers' 2 0.97/2.18 1.53/2.74 23.5/21.4 20.2/18.23 6.29/6.79 8.17/8.10 22.4/20.8 20.9/18.51 1.80/6.66 1.72/5.48 0.75/2.01 0.75/1.76Samples 2 9.33/26.7 9.10/23.4 3.30/9.54 2.69/2.68(4) 3 30.7/93.4 25.5/73.6 13.8/30.3 13.6/26.71 0.91/2.81 0.93/2.38 0.75/1.91 0.77/1.74Samples 2 9.88/27.7 9.35/23.5 4.92/10.4 3.47/7.07(5) 3 36.4/97.2 30.9/77.3 23.9/38.9 21.5/33.51 0.90/2.71 0.93/2.35 0.89/2.06 0.86/1.82Samples 2 11.3/29.4 10.9/24.6 6.81/12.5 4.81/8.99(6) 3 57.3/119 49.0/92.5 39.3/52.8 38.9/47.71 0.83/1.98 1.85/3.67Cobbs' 2 3.85/14.9 6.04/19.1 n/a n/a3 17.9/84.5 21.8/79.31 0.05/0.15 0.05/0.04 0.10/0.25 0.09/0.07Dfs(a) 2 0.88/2.72 0.71/0.57 0.37/0.96 0.27/0.223 5.53/16.9 4.69/3.96 1.51/4.39 1.01/0.82Table 3. Query time for short patterns and for 1, 2 and 3 errors. The on-line algo-rithm shows time in milliseconds in the format \user/system", in italics. The indexedalgorithms show the fraction they take of the time of the on-line algorithm. The formatis \a=b", where a considers only user time and b considers both. The fastest indexedtimes are in boldface.A remaining problem is that the su�x tree data structure needs too muchspace. We plan to replace it by a su�x array [21]. The su�x array contains theleaves of the su�x tree in left-to-right order, or equivalently the pointers to all thetext su�xes in lexicographical order. The space requirement is in practice 4 timesthe text size, which is reasonable. Su�x tree nodes (i.e. subtrees) correspondto su�x array intervals. Any movement in the su�x tree can be simulated inO(logn) time in the su�x array, and therefore the �nal complexity is multipliedby O(log n) and the condition for time sublinearity is not a�ected. Finally, weare still free to use the j value we like (unlike q-gram indices, which are limitedby q). In particular, we can easily implement specialized pattern partitioningapproaches for biased texts as in [7], where the partitioning minimizes the totalnumber of text positions to verify.



Index k dna h-dna fra h-fra(m = 20) (m = 20) (m = 16) (m = 16)2 184.6/22.18 75.16/16.61 60.59/17.56 29.91/9.48On-line 4 311.4/21.70 116.0/15.79 116.3/20.83 50.71/14.986 779.2/21.42 297.4/15.77 205.6/20.58 92.36/13.372 0.67/1.69 0.91/1.97 7.03/8.06 10.9/10.9Myers 4 5.13/5.50 5.61/5.74 32.7/29.2 31.9/26.36 16.9/16.8 17.7/17.3 26.5/25.0 25.2/23.12 1.55/5.10 1.60/4.55 0.44/0.95 0.63/1.03Samples 4 6.14/13.4 6.16/12.4 2.08/4.62 2.03/4.01(4) 6 9.10/25.4 9.48/27.9 9.59/18.6 8.85/16.12 0.60/1.93 0.64/1.73 0.38/0.75 0.62/0.91Samples 4 5.26/11.3 5.77/11.9 2.21/4.87 2.15/4.19(5) 6 10.0/25.5 10.7/26.4 14.8/23.6 12.7/19.62 0.31/0.83 0.41/0.84 0.39/0.70 0.60/0.91Samples 4 5.61/11.7 6.18/12.1 2.71/5.13 2.51/4.42(6) 6 15.2/31.5 15.3/30.8 22.9/31.1 19.3/25.32 3.93/11.7 6.60/16.0Cobbs' 4 *** 69.5/171 n/a n/a6 *** ***2 0.31/1.19 0.32/0.26 0.59/1.49 0.45/0.34Dfs(a) 4 6.39/30.8 4.31/3.79 4.15/14.4 2.49/1.936 14.6/64.9 7.76/7.37 10.7/42.0 5.87/5.132 0.09/0.23 0.08/0.07 0.22/0.43 0.18/0.13Dfs(p) 4 3.24/6.42 2.63/2.32 0.76/1.92 0.61/0.476 11.3/12.6 7.76/7.37 2.26/6.05 1.59/1.38*** One single query took more than 2 hours of elapsed time.Table 4. Query time for medium patterns and for k = 2, 4 and 6. The on-line algo-rithm shows time in milliseconds in the format \user/system", in italics. The indexedalgorithms show the fraction they take of the time of the on-line algorithm. The formatis \a=b", where a considers only user time and b considers both. The fastest indexedtimes are in boldface.AcknowledgementsWe thank the nice comments of two referees, which helped to improve this work.We also thank Erkki Sutinen for his code to build the su�x tree, and GeneMyers and Archie Cobbs for sending us their implemented indices.References1. A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag,New York, 1985.2. M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. InProc. WSP'97, pages 2{20. Carleton University Press, 1997.
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Pattern: m’=9, k=5

m’ At least 9-5=4 matches

Text substring

lFig. 7. Upper bound for the probability of matching. At least max(m0 � k; ` � k)characters must match, since otherwise it would not be possible to convert one stringinto the other.In the analysis that follows, we call � = k=`, where �=(1 + �) � � � 1. Wewill prove that, after some depth ` in the su�x tree, the matching probabilityis O(
(�)`), for some 
(�) < 1. We begin with the �rst summation. We analyzeits largest term (the last one), which is1�`�k�k̀�2and by using Stirling's approximation x! = (x=e)xp2�x(1 +O(1=x)) we have1�`�k  ``p2�`kk(` � k)`�kp2�kp2�(`� k)!2�1 +O� 1̀��which is � 1�1���2�(1� �)2(1��)�` `�1 � 12��(1 � �) +O� 1̀��where the last step is done using Stirling's approximation to the factorial. Thisformula is of the form 
(�)` O(1=`), where we de�ne
(x) = 1�1�xx2x(1 � x)2(1�x) (1)The whole �rst summation is bounded by `�k times the last term, which gives(` � k)
(�)`O(1=`) = O(
(�)`). Therefore the �rst summation is exponentiallydecreasing with ` if and only if 
(�) < 1, i.e.� > � 1�2�(1� �)2(1��)� 11�� = 1� 2�1�� (1 � �)2 (2)It is easy to show analytically that e�1 � � �1�� � 1 if 0 � � � 1, so it su�cesthat � > e2=(1� �)2, or equivalently� < 1� ep� (3)



is a su�cient condition for the largest (last) term to be O(
(�)`), as well as thewhole �rst summation.We address now the second summation, which is more complicated. In thiscase, it is not clear which is the largest term. We can see each term as1�r�r̀��k + rk �where ` � k < r � m � k. By considering r = x` (x 2 [1 � �;m=` � �]) andapplying again Stirling's approximation, we maximize the base of the resultingexponential, which is h(x) = (x+ �)x+��xx2x(1� x)1�x��Elementary calculus leads to solve a second-degree equation that has rootsin the interval [1��;1) only if � � �=(1��)2 . Since due to Eq. (3) we are onlyinterested in � � 1=(1� �)2, �h(x)=�x does not have roots, and the maximumof h(x) is at x = 1� �. That means r = ` � k, i.e. the �rst term of the secondsummation, which is the same largest term of the �rst summation.We conclude that the probability of being active at a node of level ` is upperbounded by m � k` 
(�)` �1 + O� 1̀�� = O �
(�)`�and therefore Eq. (3) is valid for the whole summation. When 
(�) is 1, theprobability is very high: only considering the term m0 = ` we have 
(1=`).Hence, the result is that the matching probability is very high for � = k=` �1� e=p�, and otherwise it is O(
(�)`), where 
(�) < 1.Although the e appeared via a bounding condition, we can see that thisbound is tight: we take log� on both sides of the condition 
(�) < 1 and get1� � + 2(� log� � + (1� �) log�(1� �)) > 0and by replacing x = 1� � and using ln(1� x) = �x +O(x2) we havex ln� + 2(x lnx� (1� x)(x+ O(x2)) = x ln� + 2x lnx� 2x+ O(x2) > 0from where divide by x to obtainx > ep� eO(x) = ep� (1 +O(x)) = ep� (1 +O(1=p�))We conclude that the precise limit for � = 1� x is� < 1� ep� + O(1=�)As we show experimentally in [8], however, the real � limit is very close tothe same formula if e is replaced by c = 1:09. The reason is that the boundingcondition (Figure 7) we use is not strong enough: for instance, we could avoidreplacements in the edit distance and the bound would be the same. In the paperwe use a limit of the form � = 1 � c=p�, knowing that we can prove c � e butin practice it holds c � 1.


